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Exact solution of the Ising model on checkerboard fractals in an external magnetic field
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In this paper we use a diagrammatic technique to determine the exact recursion relations for the partition
function of the Ising model in an external magnetic field, situated on the first two members of the checkerboard
family of fractal lattices embedded in two dimensions. This represents the first exact general solution of this
model for the case of nonzero field. The closed-form expression for the partition function is obtained for the
first member in the zero-field limit and the nonzero-field recursion relations prove sufficient for exact evalu-
ation of the response functions. We also calculate the temperature dependence of the specific heat and suscep-
tibility. [S1063-651X98)04106-3

PACS numbegps): 05.50+q, 47.53+n, 64.60.Cn, 61.43.Hv

I. INTRODUCTION tions we then find the recursion relations for the temperature
and field derivatives of the partition function, which can be
In spite of the fact that finitely ramified fractals presentiterated for arbitrary parameter values to yield the response
one of the rare cases where the Ising modelaisleast in ~ functions with any desired precision.
principle) exactly solvabld1-4], for the case of the nonzero In the next section we present the modification of the
external magnetic field to date such closed-form solutions diagrammatic technique developed in R&f and derive the
exist An exact closed-form solution for the partition function "ecursion relations for the partition function of the first mem-
of the Ising model on the first member of the checkerboard®r of the CB fractal family in nonzero external magnetic
(CB) fractal family (with generator side length=3) in zero field. In S_ec. Il we dlsquss the_symbollc-numerlcal approach
field, in two and three dimensions, was recently derived b)psed to.fmd the_ recursion relations for the second me_mber of
Yang[5] using graph theory, but the nonzero-field case hadhe family and in Sec. IV we presept the r_esults .obtamed for
still defied solution. On the other hand, the nonzero-fieldthe thermodynamic response functions. Finally, in Sec. V we
case turns out to be amenable to exact renormalization-groufaw the conclusions.
(RG) analysis and to date exact RG recursion relations have

been establisheld, 7] for the members of the Siemski gas- Il. EXACT RECURSION RELATIONS

ket fractal family with generator side lengt+2,3,...,8. FOR THE PARTITION FUNCTION
In this work we establish the exact recursion relations for OF THE CB FRACTAL

the partition function of the Ising model on the first two WITH BASE b=3

members of the CB fractal familfwith generator side

lengths b=3 and b=5), embedded in two dimensions,

which prove sufficient for exact evaluation of the responsetr‘)dl“:ed in Ref[7] for more convenient application to the

functions. In the special case of zero external magnetic ﬁelos,peclflc case of members of the CB family in an external

the recursion relations yield a closed-form expression iden_[nagnetm field. The recursion relations will prove to be exact

tical to that of Yang5]. In the general case of nonzero field " @ll Stages of construction of the fractal, starting from the
the closed-form expression for the partition function still generator up to the ther_modynamlc —— .
does not seem to be tractable, but the fact that the field and We cc_)nS|der .Ismg spins located on vertices of CB fractal
temperature dependence of the response functions can be ﬂat-“ce& interacting through the Hamiltonian
merically obtained from the recursion relations wéhbi-
trary precision render_s th|s approach equivalent to having ’H:—Jz SiSj_HE S, )
the closed-form solution in the field. (NN) i

To obtain the recursion relations for the partition function,
we extend the diagrammatic procedure developed in a previvhere J is the nearest-neighbor exchange coupliSgs:
ous work[7] by introducing auxiliary steps in the recursion =1 is the Ising spin variable at the lattice siteH is the
process. The exact recursion relations are obtained manualixternal magnetic field, angNN) denotes summation over
for the b=3 CB fractal and for theb=5 case we use a the nearest-neighbor pairs. The first two stages of construc-
devoted symbolic computational algorithm. From these relation of the first two members of the CB family are shown in

In this section we extend the diagrammatic technique in-
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FIG. 1. First two stages of construction€1 andn=2) of the ) i ) ) o
first two members of the checkerboard fractal family with generator FIG. 2. (& Spin configurations corresponding to the six inde-
side length(@) b=3 and(b) b=>5. Fractal lattices are obtained in Pendent partial partition function;, Z,, Zs, Z4, Zs, andZe, with
the limit n— . {++++}, {+++-} {++—-—-}, {+—+-}, {+——-}, and
{————1} configurations of the vertex spins. The shaded areas
indicate the existent substructure, with undetermined orientation of
constituent spingb) Spin configurations corresponding to the three
independent auxiliary partial partition function, &,, and s,
corresponding td+ +}, {+—}, and{— —} configurations of the
diagonal spins.

Fig. 1. The lattice at stage is obtained by joining, struc-
tures of the fi— 1) st stageexclusivelyby their vertices, with
n.=>5 for the first memberl{= 3) andn.= 13 for the second
member p=5), n. being independent of the stage of con-
structionn.

q ]f‘t a% stag_elof cc_)rjstrufcnon_ of a _ClBlfractall, or:}e CaNof the constituent if—1)st stage structurgsEach of the
eline dpartla parg;['on u?ct|onl§2i /! _f“H ) 'fQ that graphs corresponds to a single term in the recursion relation,
correspond to possible configurations of the four vertex,ni-p, is obtained as the product of partial partition functions

spins, with a summation perfqrmed over aII. the other spinsof the constituentrf— 1)st stage structures and an exponen-
From the symmetry of the lattice, however, it follows that atyig) multiplicative factor

each stage there are only six independent partial partition

functions Z,, Z,, Z3, Z,, Zs, and Zg, corresponding to N;
{(++++},  {+++-},  {++--} {+—-+-} ex;{—ﬂHE Si(ri—l)},
{+——-}, and {— ———} configurations of the vertex =1

spins, respectively. Spin configurations corresponding to in-

dependent partial partition functions are schematicalljvhere the sum is performed over the interior spinsr; is
shown in Fig. 2a). If the recursion relations between the setsthe number of (—1)st stage structures sharing in thth

of partial partition functiongcorresponding to any two con- stage theth interior site, and3=1/kgT is the standard no-
secutive stages of construction of the lattiaee established, tation for the reciprocal of the product of the Boltzmann
the partition function at arbitrary stage of construction of theconstant and temperature. This factor accounts for the differ-

lattice can be found as ence between the energy of théh stage structure and the
simple sum of energies of tha{ 1)st stage structures. The
Z2=2,+4Z,+4Z3+2Z,+ 425+ 24 (20  problem with the checkerboard lattices is that already the

first member withb=3 hasN;=12 interior spins, so that

and the thermodynamic response functions can be obtaindbere are %2=14096 graphs associated with each of the six
as temperature and field derivativeszfThe recursion re- recursion relations for the partial partition functions. This
lations for the partial partition functions could in principle number of graphs cannot be handled manually and indeed, in
also be used to obtain the real-space RG relations for th8ec. lll, we will discuss the symbolic algebraic algorithm
interaction parameters as well as the closed-form expressiassed for the second membebp=<£5) with N;=32 interior
for the partition function. spins corresponding t032=4 294 967 296 graphs for each

To construct the recursion relations for the partial parti-of the six recursion relations. The number of necessary
tion functions we have introduced in R¢fl] a convenient graphs is, however, drastically reduced if we take into ac-
diagrammatic technique, based on inspection of graphs thabunt the fact that out of the 12 interior spins only four are
correspond to two consecutive stages of construction. Witlshared by two f—1)st stage substructures;€2), while
each of the six partial partition functions at stagee asso- the other eight belong only to a single substructure=(1).
ciate all graphs with vertex spins fixed in the correspondingVe can thus assume that the summation over these eight
configuration, for all possible configurations of the interior spins has already been performed and, in addition to the six
spins[we term interior spins those spins that are not at verpartial partition function&,, Z,, ... Zg, consider the auxil-
tices at thenth stage of construction, but are the vertex spingary partial partition functions;, é,, and §; corresponding
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Gl O O O ] exp(—BHES).
+|_+ U+ +|_+ +_l+ +|_+ +—I+ +i—+ :J+ +|_+ __l+ I:l
a) BOET  ARELET ARG LOE TGS By inspection of Fig. 3 we find the following recursion rela-
+W _r tions betweerany twoconsecutive stages of construction:
ERE Z)=2,67e PN+ 472,536,6 2PN+ 47,5555+ 22,6555
Zude” +4Z758,65e?P" + 75 55e*PM, (3a)
GLE O G EE O zp=2,886,e %"+ Z,(86,+ 35262 e 281+ 27,4( 526,55
e L L + 0,09+ 2 535,55+ 5,5 + Z6(36,5305+ 57
107 0:€ 201 05€ 10:€ 10204 102
b) - .- .- .. .. . +253 556, (3b)
G GLEY L) GEED LE ,
ERal e ERa e Z,=2,6255e P+ 27,( 816,65+ 6,63)e 2P1
Cnd6s, | 268 SLOSLE | L8 nseem +Z4(28,6285+ 8202+ 8%) + 22,5, 625
IFEsR s e s el +275(8,5,85+ 8385)€2PH+ 25555561, (30)
OO0, ca OO0 . 00, 0, Z,=2,8565e 4PN+ 27,( 856,55+ 8, 63)e 2P
7,566  22,616,6,6™ 27,6,86™  22,6,66, 2,663
C) RN + 4738, 0285+ Z4( 8252+ 83)+225( 8355
S P I P I + 6,5,02)€28" + 25252 PH. (3d)
+|; 3+ +I_ ;J+ +|_ ,TJ+ +|_, _,|.+ A gﬂ+ From the symmetry of the lattice it follows that the remain-
7,64 27,8,036, 27,0,0,05¢" 22,5,6,&" 7,03 03€ . . . .
ing two recursion relations faZs; andZg are obtained from
- .- ‘- + - . - + those forZ, and Z,, respectively, by substituting,« Zg,
P P 1 P A I B M Zy—2Zs, 61> 63, andH«— —H, yielding
lEpapEpaNEpaEnalsna) - ~aph ) opH 2
Z, 62026 27,625,0,6%" 20,6,036  47,0,0%8, L8 25=2,6,5% +25(38,8;65% 5y)e +225(616,03
d) _ .- .- .- . + 5385) + Z4(8,8,0%+ 8355) + Zs(3526%+ 8,63) e2AH
OB O O k1 O]
SpalspapspapEga * 26022t %9
L0 RLO6ET 2L066ET 255N Zi=2,65e PN+ 47,636,e 2PN+ 42,5565+ 22,6555
FIG. 3. Diagrams used for determining the recursion relations +4255253823H+265364,3H_ (3f)

for the partial partition functionga) Z4, (b) Z,, (c) Z3, and(d) Z,.

In each case, only one representative member of a given Symmety, \harmore, from Fig. 2 it is easily deduced that the auxil-
class is shown, which is indicated by the integer multiplicative fac-iar artial ’artition functions{&;, i=1,2,3 can be ex-
tor, each term being a product of one partial and four auxiliary y P P " v

partition functions. The remaining two recursion relations Zgr pressed in terms of the partial partition functio;
and Zg are obtained from those fdZ, and Z,, respectively, by i=1,....8as

substitutingZ,« Zg, Z,«+Zs, 81+ 03, andH«— —H. S1=Z1+2Z,+2Z,, (43
to {+ +}, {+—}, and{— —} configurations of spins on the

diagonal of the lattice, schematically shown in Figh)2 If 0y=2Z5+2Z3+Zs, (4b)
these functions are known for the{ 1)st stage together

with the six partial partition functions, there are only four 03=2Z,+2725+Zg. (40

interior spins left to be considered in the construction of the

nth stage. The total number of graphs in the chse3 is By substituting Eqs(4) into Eqgs.(3) explicit expressions for
thus reduced to just“216 graphs associated with each of the recursion relations of the partial partition functions are
the six recursion relations for the partial partition functionsobtained.

and in Fig. 3 these graphs are represented for partial partition Finally, for the initial conditions of the recursion relations
functionsz;, i=1,... ,4. (3) one can choose the partial partition functions of a simple

Each graph now corresponds to the product of the partiadquare(zeroth stage of construction of the fragtajiven by
partition functionZ; of the central (—1)st stage structure,

the auxiliary partial partition functions; of the peripheral Z,=ePItasH, (5a)
four (n—1)st stage structures, and the exponential field-
dependent term Z,=e?f", (5b)
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Z5=1, (50) Z=2(8,+5,). (9)
Z,=e 4P (5d) Substituting Egs(7) into Egs.(6) and then the result into Eq.
(8), we find the following extremely simple recursion rela-
Zs=e 2PH (5¢) tion for partition function at two arbitrary successive steps of
construction:
Zg=e4PI 4, (5f)
Z'=2(2/2)°, (10

In order to make contact with the conventional RG spin deci- ) ) )
mation approach, it seems worthwhile commenting on thévhere we have usedAPLE v algebraic manipulation soft-
equivalence of recursion relatiof®) for the partial partition ~Ware package to perform this straightforward but tedious
functions with the standard real-space RG recursion relation@sk. Starting from the partition functiod, of a single
for the interaction parameters, as well their potential to yielgsduare(zeroth stage of construction of the fragtahd iter-
a closed-form expression for the partition function. ating Eq.(10) n times, for the partition function at theth

To explicitly write the standard real-space RG equationsstage of construction it is easily fourtdy summing the geo-
for the closed set of interactiof;}, instead of Eq(1) a  Metric seriepthat
Hamiltonian with six terms needs to be considefether-
wise new couplings are generated at initial RG Stepsx-
pressions equivalent to E¢&) would then provide the rela- nere m=5 js the number of squares in theh stage of
tion between the partial partition functions and the set Of.,ngtryction. For a simple square the partition function is
renormalized couplingswhich represent the parameters of

Z,=2(Zy/2)™, (11)

the standard real-space RG procedlaean arbitrary stage given by
of construction of the fractal. To obtain the standard RG Zo=2(e*P+6+e 48, (12)
recursion relations, one would further have to insert these
equations into Egs.(3) and (4) and solve for {K/, which can bgafter a bit of elementary algebraxpressed as
i=1,...,8 interms of{K;, i=1,...,8. 4

The closed-form expression for the partition function Z,=2"cost(BI)[1+tant(BI)]. (13

could also in principle be obtained from Ed8)—(4). This . o . .
becomes feasible in the zero-field case, where these equ'ezl'-na"y’ substituting Eq(13) into Eq. (11) we find
tlong_can be qsed to obtain .the recursion relation fql(ftlhié) 7, = 2Mncosh(BI)[ 1+ tanH(8I)]™, (14)
partition function at two arbitrary steps of construction of the

fractal, which is then iterated to yield a closed-form expresyyhereN,=3m-+1 is the number of spins arld =4m the

sion. That is, because of the symmetry in zero field there arg, mper of bonds in thath stage of construction of the frac-
only four independent partial partition functiods, Z,, Zs, (1. Equation(14) represents the exact solution of the zero-
andZ, and two auxiliary partial partition function§; and  fig|q case, derived by YaniF] using graph theory.
. SubstitutingZs=2,, Zg=Z,, H=0, and §;=d; into In the nonzero-field case, we could not obtain a single
Egs.(2)—(4) we obtain the recursion relations recursion relation for the full partition function and the
;L 22 22 closed-form expression in terms of elementary functions still
Zy=Zy(81+ 5‘21)+422(5?52+ 515§)+4Z35152+2245152’ seems unreachable. Nevertheless, as it will be shown in Sec.
(6a) 1V, Egs.(3) and(4), with initial conditions(5), are sufficient
for calculating the response functions aaty stage of con-
struction of the fractal witkarbitrary precision The thermo-
+2Z5(838,+ 8,85) + Z4(538,+ 8,83, (6b)  dynamic limit (fpr a desired precisignis obtained when the
response function&alculated per spjnstop changing with

Z5=27,(538,+ 6,83) + Zp( 51+ 65265+ 53)

Z4=2Z,828%+4Z,( 35,4 8,63) + Z3( 54+ 28285+ 5%) increasing system size. We now proceed to describe the ap-
proach used to find the recursion relations for the second
+27,6263, (600  member of the CB fractal family.
Z,=22, 8355+ 4Zy( 865+ 5183) + 4238555+ Z4( 51+ 53), IIl. RECURSION RELATIONS FOR THE
(6d) CHECKERBOARD FRACTAL WITH b=5
and As it was shown in Ref[7], recursion relations for the
partial partition functions in the general case of finitely rami-
01=2,1+27,+ 27, (78 fied fractals, determined from the associated diagrams, can
be expressed in the form
52:222“1‘ 223, (7b)
N nz
with Z/= 2, d(ki)ePkDAH T za/ kD, (15)
k=1 /=1

Here d(k,i) is the symmetry-induced degeneracy of indi-
or, equivalently, vidual graph contributions, with a total of<2Ni represen-
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tative diagramsghereN; =32 is the number of interior spins
The total number of associated diagrams 1§, 20 that
EE':ld(k,i)=2Ni. With each representative diagraknwe
associate a product of; partial partition functions, corre-
sponding to then. constituent structures of the previous
stage of construction. The exponeraté/ ' k,i) satisfy the
conditionE'}Z:la(/,k,i)znc, wheren,=6 is the number of
independent partial partition functions. Finally, the multipli-
cative factore®®DPH accounts for the fact that when théh
stage partial partition functions are multiplied, the field-
dependent term in the Hamiltonian is taken into account as
many times as there argh stage structures connected by a
given interior site. The quantit(k,i) is given by

=z

b(k,i) Z (16)

wherer; is the number ohth stage structures joined in the
(n+1)st stage by thé¢th interior site. For a more detailed
description of this procedure, the reader is referred to
Ref.[7].

From Eq.(15) it follows that the recursion relations are
determined in full by the matrices, b, andd. To find the
recursion relations for the second member of the checker-
board fractal family b=5) with N;=32 corresponding to
2Ni=4294 967 296 graphs, we have developed a devoted
symbolic computer algorithm that performs the simfibet
unfeasible for humangask of graph counting. It requires 36
Mb of memory and runs approximately 30 h on a 133-MHz
Pentium processor. Each of the obtained recursion relations
has roughly 45 000 terms. Since the algorithm deals with
integer arithmetics, the recursion relations axact but be-
cause of their size they are not presentable in a tabular form.

The matricesa, b, andd in the form of data files, the origi-
nal algorithm for their calculation as well as the algorithm
for calculating thenumerically exactesponse functions for
arbitrary field and temperature, are obtainable from the au-
thors upon request.

We have considered developing a more efficient algo-
rithm based on the transfer matrix approaske, e.g., Ref.
[7]) for determining the recursion relations for the third
member of the checkerboard familyp£€7), but have de-
clined to do so because of the fact that recursion relations are
(at present simply too big to be used for calculating the
response functions. We put this off for tlieopefully near

oz
0T &

i;% d(k i)eBHb(k,i)
T & '
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/=1
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x| 28b(ki) 72 L lal/ ki) - 1](Z aH)
19°Z2, 192,

tZm? +2 Ak o

1972, "
X a(/’kl) /]H Z/(,,/ ey
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Starting from initial valueg5) for the partial partition func-

future when computer hardware of considerably greatefions and the corresponding equations for their derivatives

speed and memory becomes more readily available.

(for a given temperature and figlduccessive application of

Egs.(17) yields the derivatives for all higher stages of con-

IV. THERMODYNAMIC RESPONSE FUNCTIONS

In this section we turn to calculating the response func-
tions using the recursion relations for the partial partition
functions. To avoid problems intrinsically associated with
numeric differentiation, we deal directly with threcursion
relations for the field and temperature derivativafghe par-
tial partition functions. They are obtained by formal differ-
entiation of Eq.(15), and are also in full determined by the
coefficient matrices, b, andd. The explicit expressions for
the recursion relations for the field and temperature deriva-
tives are given by

struction. The derivatives of the total partition function are
then obtained as linear combinations of the partial deriva-
tives[see Eq(2)], and the specific heat, magnetization, and
susceptibility per spin at thieth stage of fractal construction
are obtained from the general formulas

keTH15°Z 2 9Z [19Z)\? 18
"N, |zt zTar \zaT) | 189
keT 1 9Z 186
(m)—N—nzm, (18b
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0.8 - . M B The specific heat shows only the regular Schottky peak,
Cu 0.74 _ where both the intensity and the position of the maximum on
the temperature scale increased with increasinghe be-
0.6 havior of the specific-heat curves for the checkerboard fractal
0.5 lattices with increasindp is thus reminiscent of the specific-
heat behavior for increasing finite-size systems.
04 The susceptibility, on the other hand, shows divergent be-
a> 0.3 havior in the zero-temperature limit, the temperature region
where the susceptibility is “practically divergent” being in-
0.2 creased fob=5 with respect to that fop=3. In the light of
0.1 our previous resultg7] for the Sierpnski gasket fractal fam-
o0 ily, we can expect these regions to monotonically increase

o os o 1s 20 25 with b and approach the critical temperatiig of the square

1K, T/J lattice in the limitb—oo. For comparison, in F|g..(b) we

B also show the results for the Siempki gasket withb=2

: ; from Ref.[7], on the same scale, as well as the curves for the
linear chain and the square lattice. It follows that the decay
Gasket of correlations is much faster for both considered checker-
board fractals than that for the Siempki gasket, although
T the fractal dimension of the checkerboard fractal with 5
Square (d=In 13/In 5=1.5936) is greater than that of the Siegki
fattice gasket withb=2 (d=In 3/In 2=1.5849). The decay of cor-
relations is nevertheless slower than in the case of the chain,
with a clear slowing down tendency with increasing

V. CONCLUSION

In this paper we find the exact recursion relations for the
partition function, and its field and temperature derivatives,
ks T/J for the first two members of the checkerboard fractal family,
in a nonzero external magnetic field. This represantsxact
two members of the checkerboard fractal family, with eneratorgeneraI solutionof this model in anonzero external mag-

. S - o Y, ' 9 netic field The methodology for obtaining the exact recur-
side lengthsb=3 andb=5. The specific-heat curves display be- . . . . LS .
sion relations is rather involved, resulting in expressions that

havior reminiscent of finite-size systems. The susceptibility curves Iv be stored in the f f ter data fi Th
diverge in the zero-temperature limit, with slowing down of the can only be stored in the form ol computer gata fiies. There-

correlation decay rate with increasibg Curves for the Ising chain, from, the exactspecific-heat and susceptibility tempe_rature
Sierpirski gasket, and square lattice are shown for comparison. dépéndence curves are calculated and compared with those
pertinent to the Sierpski gasket fractals, as well as to the
corresponding Euclidean lattices. The crossover behavior
(180  seems to be much slower than in the case of the Bigkpi
gaskets, implying that self-similarity, fractal dimension, and
EPrder of ramification are not the sole properties dictating the

0 0.5 1.0 1.5 2.0 2.5

FIG. 4. (a) Specific heat antb) susceptibility curves for the first

_ kgT
)(—N—n

1 922 (1 az)z

It should be stressed here that since we are dealing wi
exactrecursion relations, the response functions can be ob: ) . .
tained witharbitrary accuracy and are thus virtualgxact f!eld Ismg_model of the_ first membeb¢ 3), recursion rela-_
In Fig. 4 we present the results of our calculations for thellons are |t_e_rated to_ylel(_j the exact clo_sed-form expression
specific heat and susceptibility for the first two members Oifor the partition function, in agreement with the result of Ref.
the checkerboard fractal family. The calculated curves corre[s]'
spond to the thermodynamic limit in the sense that we have
iterated beyond the point where the curves stop changing
(within the chosen accuragyvith further steps of construc- This work was partially supported by CNPg and FINEP

Tactal to Euclidean crossover. In the special case of the zero-
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