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Exact solution of the Ising model on checkerboard fractals in an external magnetic field
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In this paper we use a diagrammatic technique to determine the exact recursion relations for the partition
function of the Ising model in an external magnetic field, situated on the first two members of the checkerboard
family of fractal lattices embedded in two dimensions. This represents the first exact general solution of this
model for the case of nonzero field. The closed-form expression for the partition function is obtained for the
first member in the zero-field limit and the nonzero-field recursion relations prove sufficient for exact evalu-
ation of the response functions. We also calculate the temperature dependence of the specific heat and suscep-
tibility. @S1063-651X~98!04106-3#

PACS number~s!: 05.50.1q, 47.53.1n, 64.60.Cn, 61.43.Hv
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I. INTRODUCTION

In spite of the fact that finitely ramified fractals prese
one of the rare cases where the Ising model is~at least in
principle! exactly solvable@1–4#, for the case of the nonzer
external magnetic field to dateno such closed-form solution
exist. An exact closed-form solution for the partition functio
of the Ising model on the first member of the checkerbo
~CB! fractal family ~with generator side lengthb53) in zero
field, in two and three dimensions, was recently derived
Yang @5# using graph theory, but the nonzero-field case
still defied solution. On the other hand, the nonzero-fi
case turns out to be amenable to exact renormalization-g
~RG! analysis and to date exact RG recursion relations h
been established@6,7# for the members of the Sierpı´nski gas-
ket fractal family with generator side lengthb52,3, . . . ,8.

In this work we establish the exact recursion relations
the partition function of the Ising model on the first tw
members of the CB fractal family~with generator side
lengths b53 and b55), embedded in two dimension
which prove sufficient for exact evaluation of the respon
functions. In the special case of zero external magnetic fi
the recursion relations yield a closed-form expression id
tical to that of Yang@5#. In the general case of nonzero fie
the closed-form expression for the partition function s
does not seem to be tractable, but the fact that the field
temperature dependence of the response functions can b
merically obtained from the recursion relations witharbi-
trary precision renders this approach equivalent to havi
the closed-form solution in the field.

To obtain the recursion relations for the partition functio
we extend the diagrammatic procedure developed in a pr
ous work@7# by introducing auxiliary steps in the recursio
process. The exact recursion relations are obtained man
for the b53 CB fractal and for theb55 case we use a
devoted symbolic computational algorithm. From these re
PRE 581063-651X/98/58~1!/80~6!/$15.00
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tions we then find the recursion relations for the temperat
and field derivatives of the partition function, which can
iterated for arbitrary parameter values to yield the respo
functions with any desired precision.

In the next section we present the modification of t
diagrammatic technique developed in Ref.@7# and derive the
recursion relations for the partition function of the first mem
ber of the CB fractal family in nonzero external magne
field. In Sec. III we discuss the symbolic-numerical approa
used to find the recursion relations for the second membe
the family and in Sec. IV we present the results obtained
the thermodynamic response functions. Finally, in Sec. V
draw the conclusions.

II. EXACT RECURSION RELATIONS
FOR THE PARTITION FUNCTION

OF THE CB FRACTAL
WITH BASE b53

In this section we extend the diagrammatic technique
troduced in Ref.@7# for more convenient application to th
specific case of members of the CB family in an exter
magnetic field. The recursion relations will prove to be ex
in all stages of construction of the fractal, starting from t
generator up to the thermodynamic limit.

We consider Ising spins located on vertices of CB frac
lattices, interacting through the Hamiltonian

H52J (
^NN&

SiSj2H(
i

Si , ~1!

where J is the nearest-neighbor exchange coupling,Si5
61 is the Ising spin variable at the lattice sitei , H is the
external magnetic field, and̂NN& denotes summation ove
the nearest-neighbor pairs. The first two stages of const
tion of the first two members of the CB family are shown
80 © 1998 The American Physical Society
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PRE 58 81EXACT SOLUTION OF THE ISING MODEL ON . . .
Fig. 1. The lattice at stagen is obtained by joiningnc struc-
tures of the (n21)st stage,exclusivelyby their vertices, with
nc55 for the first member (b53) andnc513 for the second
member (b55), nc being independent of the stage of co
structionn.

At any stage of construction of a CB fractal, one c
define 16 partial partition functions$Zi ,i 51, . . . ,16% that
correspond to possible configurations of the four ver
spins, with a summation performed over all the other sp
From the symmetry of the lattice, however, it follows that
each stage there are only six independent partial parti
functions Z1, Z2, Z3, Z4, Z5, and Z6, corresponding to
$1111%, $1112%, $1122%, $1212%,
$1222%, and $2222% configurations of the vertex
spins, respectively. Spin configurations corresponding to
dependent partial partition functions are schematica
shown in Fig. 2~a!. If the recursion relations between the se
of partial partition functions~corresponding to any two con
secutive stages of construction of the lattice! are established
the partition function at arbitrary stage of construction of t
lattice can be found as

Z5Z114Z214Z312Z414Z51Z6 ~2!

and the thermodynamic response functions can be obta
as temperature and field derivatives ofZ. The recursion re-
lations for the partial partition functions could in princip
also be used to obtain the real-space RG relations for
interaction parameters as well as the closed-form expres
for the partition function.

To construct the recursion relations for the partial pa
tion functions we have introduced in Ref.@7# a convenient
diagrammatic technique, based on inspection of graphs
correspond to two consecutive stages of construction. W
each of the six partial partition functions at stagen we asso-
ciate all graphs with vertex spins fixed in the correspond
configuration, for all possible configurations of the interi
spins@we term interior spins those spins that are not at v
tices at thenth stage of construction, but are the vertex sp

FIG. 1. First two stages of construction (n51 andn52) of the
first two members of the checkerboard fractal family with genera
side length~a! b53 and~b! b55. Fractal lattices are obtained i
the limit n→`.
x
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of the constituent (n21)st stage structures#. Each of the
graphs corresponds to a single term in the recursion relat
which is obtained as the product of partial partition functio
of the constituent (n21)st stage structures and an expone
tial multiplicative factor

expF2bH(
i 51

Ni

Si~r i21!G ,

where the sum is performed over theNi interior spins,r i is
the number of (n21)st stage structures sharing in thenth
stage thei th interior site, andb51/kBT is the standard no-
tation for the reciprocal of the product of the Boltzman
constant and temperature. This factor accounts for the dif
ence between the energy of thenth stage structure and th
simple sum of energies of the (n21)st stage structures. Th
problem with the checkerboard lattices is that already
first member withb53 hasNi512 interior spins, so tha
there are 21254096 graphs associated with each of the
recursion relations for the partial partition functions. Th
number of graphs cannot be handled manually and indee
Sec. III, we will discuss the symbolic algebraic algorith
used for the second member (b55) with Ni532 interior
spins corresponding to 23254 294 967 296 graphs for eac
of the six recursion relations. The number of necess
graphs is, however, drastically reduced if we take into
count the fact that out of the 12 interior spins only four a
shared by two (n21)st stage substructures (r i52), while
the other eight belong only to a single substructure (r i51).
We can thus assume that the summation over these e
spins has already been performed and, in addition to the
partial partition functionsZ1, Z2, . . . ,Z6, consider the auxil-
iary partial partition functionsd1, d2 , andd3 corresponding

r FIG. 2. ~a! Spin configurations corresponding to the six ind
pendent partial partition functionsZ1, Z2, Z3, Z4, Z5, andZ6, with
$1111%, $1112%, $1122%, $1212%, $1222%, and
$2222% configurations of the vertex spins. The shaded ar
indicate the existent substructure, with undetermined orientatio
constituent spins.~b! Spin configurations corresponding to the thr
independent auxiliary partial partition functionsd1, d2 , and d3,
corresponding to$11%, $12%, and $22% configurations of the
diagonal spins.
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to $11%, $12%, and$22% configurations of spins on th
diagonal of the lattice, schematically shown in Fig. 2~b!. If
these functions are known for the (n21)st stage togethe
with the six partial partition functions, there are only fo
interior spins left to be considered in the construction of
nth stage. The total number of graphs in the caseb53 is
thus reduced to just 24516 graphs associated with each
the six recursion relations for the partial partition functio
and in Fig. 3 these graphs are represented for partial part
functionsZi , i 51, . . . ,4.

Each graph now corresponds to the product of the pa
partition functionZi of the central (n21)st stage structure
the auxiliary partial partition functionsd i of the peripheral
four (n21)st stage structures, and the exponential fie
dependent term

FIG. 3. Diagrams used for determining the recursion relati
for the partial partition functions~a! Z1, ~b! Z2, ~c! Z3, and~d! Z4.
In each case, only one representative member of a given symm
class is shown, which is indicated by the integer multiplicative f
tor, each term being a product of one partial and four auxili
partition functions. The remaining two recursion relations forZ5

and Z6 are obtained from those forZ2 and Z1, respectively, by
substitutingZ1↔Z6, Z2↔Z5, d1↔d3 , andH↔2H.
e

on

al

-

expS 2bH(
i 51

4

Si D .

By inspection of Fig. 3 we find the following recursion rela
tions betweenany twoconsecutive stages of construction:

Z185Z1d1
4e24bH14Z2d1

3d2e22bH14Z3d1
2d2

212Z4d1
2d2

2

14Z5d1d2
3e2bH1Z6d2

4e4bH, ~3a!

Z285Z1d1
3d2e24bH1Z2~d1

3d313d1
2d2

2!e22bH12Z3~d1
2d2d3

1d1d2
3!1Z4~d1

2d2d31d1d2
3!1Z5~3d1d2

2d31d2
4!e2bH

1Z6d2
3d3e4bH, ~3b!

Z385Z1d1
2d2

2e24bH12Z2~d1
2d2d31d1d2

3!e22bH

1Z3~2d1d2
2d31d1

2d3
21d2

4!12Z4d1d2
2d3

12Z5~d1d2d3
21d2

3d3!e2bH1Z6d2
2d3

2e4bH, ~3c!

Z485Z1d1
2d2

2e24bH12Z2~d1
2d2d31d1d2

3!e22bH

14Z3d1d2
2d31Z4~d1

2d3
21d2

4!12Z5~d2
3d3

1d1d2d3
2!e2bH1Z6d2

2d3
2e4bH. ~3d!

From the symmetry of the lattice it follows that the remai
ing two recursion relations forZ5 andZ6 are obtained from
those forZ2 and Z1, respectively, by substitutingZ1↔Z6,
Z2↔Z5, d1↔d3 , andH↔2H, yielding

Z585Z1d1d2
3e24bH1Z2~3d1d2

2d31d2
4!e22bH12Z3~d1d2d3

2

1d2
3d3!1Z4~d1d2d3

21d2
3d3!1Z5~3d2

2d3
21d1d3

3!e2bH

1Z6d2d3
3e4bH, ~3e!

Z685Z1d2
4e24bH14Z2d2

3d3e22bH14Z3d2
2d3

212Z4d2
2d3

2

14Z5d2d3
3e2bH1Z6d3

4e4bH. ~3f!

Furthermore, from Fig. 2 it is easily deduced that the au
iary partial partition functions$d i , i 51,2,3% can be ex-
pressed in terms of the partial partition functions$Zi ,
i 51, . . . ,6% as

d15Z112Z21Z4 , ~4a!

d25Z212Z31Z5 , ~4b!

d35Z412Z51Z6 . ~4c!

By substituting Eqs.~4! into Eqs.~3! explicit expressions for
the recursion relations of the partial partition functions a
obtained.

Finally, for the initial conditions of the recursion relation
~3! one can choose the partial partition functions of a sim
square~zeroth stage of construction of the fractal!, given by

Z15e4bJ14bH, ~5a!

Z25e2bH, ~5b!
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PRE 58 83EXACT SOLUTION OF THE ISING MODEL ON . . .
Z351, ~5c!

Z45e24bJ, ~5d!

Z55e22bH, ~5e!

Z65e4bJ24bH. ~5f!

In order to make contact with the conventional RG spin de
mation approach, it seems worthwhile commenting on
equivalence of recursion relations~3! for the partial partition
functions with the standard real-space RG recursion relat
for the interaction parameters, as well their potential to yi
a closed-form expression for the partition function.

To explicitly write the standard real-space RG equatio
for the closed set of interactions$Ki%, instead of Eq.~1! a
Hamiltonian with six terms needs to be considered~other-
wise new couplings are generated at initial RG steps!. Ex-
pressions equivalent to Eqs.~5! would then provide the rela
tion between the partial partition functions and the set
renormalized couplings~which represent the parameters
the standard real-space RG procedure! at an arbitrary stage
of construction of the fractal. To obtain the standard R
recursion relations, one would further have to insert th
equations into Eqs.~3! and ~4! and solve for $Ki8,
i 51, . . . ,6% in terms of$Ki , i 51, . . . ,6%.

The closed-form expression for the partition functi
could also in principle be obtained from Eqs.~2!–~4!. This
becomes feasible in the zero-field case, where these e
tions can be used to obtain the recursion relation for the~full !
partition function at two arbitrary steps of construction of t
fractal, which is then iterated to yield a closed-form expr
sion. That is, because of the symmetry in zero field there
only four independent partial partition functionsZ1, Z2, Z3,
and Z4 and two auxiliary partial partition functionsd1 and
d2. SubstitutingZ55Z2, Z65Z1, H50, and d15d3 into
Eqs.~2!–~4! we obtain the recursion relations

Z185Z1~d1
41d2

4!14Z2~d1
3d21d1d2

3!14Z3d1
2d2

212Z4d1
2d2

2 ,

~6a!

Z285Z1~d1
3d21d1d2

3!1Z2~d1
416d1

2d2
21d2

4!

12Z3~d1
3d21d1d2

3!1Z4~d1
3d21d1d2

3!, ~6b!

Z3852Z1d1
2d2

214Z2~d1
3d21d1d2

3!1Z3~d1
412d1

2d2
21d2

4!

12Z4d1
2d2

2 , ~6c!

Z4852Z1d1
2d2

214Z2~d1
3d21d1d2

3!14Z3d1
2d2

21Z4~d1
41d2

4!,
~6d!

and

d15Z112Z21Z4 , ~7a!

d252Z212Z3 , ~7b!

with

Z52Z118Z214Z312Z4 ~8!

or, equivalently,
i-
e

ns
d

s

f

e
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Z52~d11d2!. ~9!

Substituting Eqs.~7! into Eqs.~6! and then the result into Eq
~8!, we find the following extremely simple recursion rel
tion for partition function at two arbitrary successive steps
construction:

Z852~Z/2!5, ~10!

where we have usedMAPLE V algebraic manipulation soft
ware package to perform this straightforward but tedio
task. Starting from the partition functionZ0 of a single
square~zeroth stage of construction of the fractal! and iter-
ating Eq.~10! n times, for the partition function at thenth
stage of construction it is easily found~by summing the geo-
metric series! that

Zn52~Z0/2!m, ~11!

wherem55n is the number of squares in thenth stage of
construction. For a simple square the partition function
given by

Z052~e4bJ161e24bJ!, ~12!

which can be~after a bit of elementary algebra! expressed as

Z0524cosh4~bJ!@11tanh4~bJ!#. ~13!

Finally, substituting Eq.~13! into Eq. ~11! we find

Zn52NncoshM~bJ!@11tanh4~bJ!#m, ~14!

whereNn53m11 is the number of spins andM54m the
number of bonds in thenth stage of construction of the frac
tal. Equation~14! represents the exact solution of the zer
field case, derived by Yang@5# using graph theory.

In the nonzero-field case, we could not obtain a sin
recursion relation for the full partition function and th
closed-form expression in terms of elementary functions s
seems unreachable. Nevertheless, as it will be shown in
IV, Eqs. ~3! and~4!, with initial conditions~5!, are sufficient
for calculating the response functions atany stage of con-
struction of the fractal witharbitrary precision. The thermo-
dynamic limit ~for a desired precision! is obtained when the
response functions~calculated per spin! stop changing with
increasing system size. We now proceed to describe the
proach used to find the recursion relations for the sec
member of the CB fractal family.

III. RECURSION RELATIONS FOR THE
CHECKERBOARD FRACTAL WITH b55

As it was shown in Ref.@7#, recursion relations for the
partial partition functions in the general case of finitely ram
fied fractals, determined from the associated diagrams,
be expressed in the form

Zi85 (
k51

ni

d~k,i !eb~k,i !bH )
l 51

nz

Zl
a~ l ,k,i ! . ~15!

Here d(k,i ) is the symmetry-induced degeneracy of ind
vidual graph contributions, with a total ofni<2Ni represen-
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tative diagrams~hereNi532 is the number of interior spins!.
The total number of associated diagrams is 2Ni, so that
(k51

ni d(k,i )52Ni. With each representative diagramk we
associate a product ofnc partial partition functions, corre
sponding to thenc constituent structures of the previou
stage of construction. The exponentsa(l ,k,i ) satisfy the
condition(

l 51
nz a(l ,k,i )5nc , wherenz56 is the number of

independent partial partition functions. Finally, the multip
cative factoreb(k,i )bH accounts for the fact that when thenth
stage partial partition functions are multiplied, the fiel
dependent term in the Hamiltonian is taken into accoun
many times as there arenth stage structures connected by
given interior site. The quantityb(k,i ) is given by

b~k,i !52(
j 51

Ni

Sj~r j21!, ~16!

wherer j is the number ofnth stage structures joined in th
(n11)st stage by thej th interior site. For a more detaile
description of this procedure, the reader is referred
Ref. @7#.

From Eq.~15! it follows that the recursion relations ar
determined in full by the matricesâ, b̂, and d̂. To find the
recursion relations for the second member of the chec
board fractal family (b55) with Ni532 corresponding to
2Ni54 294 967 296 graphs, we have developed a devo
symbolic computer algorithm that performs the simple~but
unfeasible for humans! task of graph counting. It requires 3
Mb of memory and runs approximately 30 h on a 133-M
Pentium processor. Each of the obtained recursion relat
has roughly 45 000 terms. Since the algorithm deals w
integer arithmetics, the recursion relations areexact, but be-
cause of their size they are not presentable in a tabular fo
The matricesâ, b̂, andd̂ in the form of data files, the origi-
nal algorithm for their calculation as well as the algorith
for calculating thenumerically exactresponse functions fo
arbitrary field and temperature, are obtainable from the
thors upon request.

We have considered developing a more efficient al
rithm based on the transfer matrix approach~see, e.g., Ref.
@7#! for determining the recursion relations for the thi
member of the checkerboard family (b57), but have de-
clined to do so because of the fact that recursion relations
~at present! simply too big to be used for calculating th
response functions. We put this off for the~hopefully near!
future when computer hardware of considerably grea
speed and memory becomes more readily available.

IV. THERMODYNAMIC RESPONSE FUNCTIONS

In this section we turn to calculating the response fu
tions using the recursion relations for the partial partiti
functions. To avoid problems intrinsically associated w
numeric differentiation, we deal directly with therecursion
relations for the field and temperature derivativesof the par-
tial partition functions. They are obtained by formal diffe
entiation of Eq.~15!, and are also in full determined by th
coefficient matricesâ, b̂, andd̂. The explicit expressions fo
the recursion relations for the field and temperature der
tives are given by
s

o

r-

d
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h
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-
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a-

]Zi8

]T
5 (

k51

ni

d~k,i !ebHb~k,i !S 2Hb~k,i !

kbT2

1 (
l 51

nz

a~ l ,k,i !
1

Zl

]Zl

]T D )
l 851

nz

Zl 8
a~ l 8,k,i ! , ~17a!

]2Zi8

]T2 5 (
k51

ni

d~k,i !ebHb~k,i !H S Hb~k,i !

kbT2 D 2

1
2Hb~k,i !

kbT3

1 (
l 51

nz

a~ l ,k,i !F2
2Hb~k,i !

kbT2

1

Zl

]Zl

]T

1@a~ l ,k,i !21#S 1

Zl

]Zl

]T D 2

1
1

Zl

]2Zl

]T2 G
1 (

l 51

nz

a~ l ,k,i !
1

Zl

]Zl

]T (
l 8Þl

a~ l 8,k,i !
1

Zl 8

]Zl 8
]T J

3 )
l 951

nz

Zl 9
a~ l 9,k,i ! , ~17b!

]Zi8

]H
5 (

k51

ni

d~k,i !ebHb~k,i !S bb~k,i !1 (
l 51

nz

3a~ l ,k,i !
1

Zl

]Zl

]H D )
l 851

nz

Zl 8
a~ l 8,k,i ! , ~17c!

]2Zi8

]H2 5 (
k51

ni

d~k,i !ebHb~k,i !H b2b~k,i !21 (
l 51

nz

a~ l ,k,i !

3F2bb~k,i !
1

Zl

]Zl

]H
1@a~ l ,k,i !21#S 1

Zl

]Zl

]H D 2

1
1

Zl

]2Zl

]H2 G1 (
l 51

nz

a~ l ,k,i !
1

Zl

]Zl

]H

3 (
l 8Þl

a~ l 8,k,i !
1

Zl 8

]Zl 8
]H J )

l 951

nz

Zl 9
a~ l 9,k,i ! .

~17d!

Starting from initial values~5! for the partial partition func-
tions and the corresponding equations for their derivati
~for a given temperature and field! successive application o
Eqs.~17! yields the derivatives for all higher stages of co
struction. The derivatives of the total partition function a
then obtained as linear combinations of the partial deri
tives @see Eq.~2!#, and the specific heat, magnetization, a
susceptibility per spin at thenth stage of fractal construction
are obtained from the general formulas

CH5
kBT2

Nn
F1

Z

]2Z

]T2 1
2

ZT

]Z

]T
2S 1

Z

]Z

]TD 2G , ~18a!

^m&5
kBT

Nn

1

Z

]Z

]H
, ~18b!
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x5
kBT

Nn
F1

Z

]2Z

]H2 2S 1

Z

]Z

]H D 2G . ~18c!

It should be stressed here that since we are dealing
exactrecursion relations, the response functions can be
tained witharbitrary accuracy and are thus virtuallyexact.
In Fig. 4 we present the results of our calculations for
specific heat and susceptibility for the first two members
the checkerboard fractal family. The calculated curves co
spond to the thermodynamic limit in the sense that we h
iterated beyond the point where the curves stop chang
~within the chosen accuracy! with further steps of construc
tion.

FIG. 4. ~a! Specific heat and~b! susceptibility curves for the firs
two members of the checkerboard fractal family, with genera
side lengthsb53 andb55. The specific-heat curves display b
havior reminiscent of finite-size systems. The susceptibility cur
diverge in the zero-temperature limit, with slowing down of t
correlation decay rate with increasingb. Curves for the Ising chain
Sierpiński gasket, and square lattice are shown for comparison
J.
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e
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e
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The specific heat shows only the regular Schottky pe
where both the intensity and the position of the maximum
the temperature scale increased with increasingb. The be-
havior of the specific-heat curves for the checkerboard fra
lattices with increasingb is thus reminiscent of the specific
heat behavior for increasing finite-size systems.

The susceptibility, on the other hand, shows divergent
havior in the zero-temperature limit, the temperature reg
where the susceptibility is ‘‘practically divergent’’ being in
creased forb55 with respect to that forb53. In the light of
our previous results@7# for the Sierpı´nski gasket fractal fam-
ily, we can expect these regions to monotonically incre
with b and approach the critical temperatureTC of the square
lattice in the limit b→`. For comparison, in Fig. 4~b! we
also show the results for the Sierpı´nski gasket withb52
from Ref.@7#, on the same scale, as well as the curves for
linear chain and the square lattice. It follows that the dec
of correlations is much faster for both considered check
board fractals than that for the Sierpı´nski gasket, although
the fractal dimension of the checkerboard fractal withb55
(d5 ln 13/ln 551.5936) is greater than that of the Sierpı´nski
gasket withb52 (d5 ln 3/ln 251.5849). The decay of cor
relations is nevertheless slower than in the case of the ch
with a clear slowing down tendency with increasingb.

V. CONCLUSION

In this paper we find the exact recursion relations for
partition function, and its field and temperature derivativ
for the first two members of the checkerboard fractal fam
in a nonzero external magnetic field. This representsan exact
general solutionof this model in anonzero external mag
netic field. The methodology for obtaining the exact recu
sion relations is rather involved, resulting in expressions t
can only be stored in the form of computer data files. The
from, the exactspecific-heat and susceptibility temperatu
dependence curves are calculated and compared with t
pertinent to the Sierpı´nski gasket fractals, as well as to th
corresponding Euclidean lattices. The crossover beha
seems to be much slower than in the case of the Sierpı´nski
gaskets, implying that self-similarity, fractal dimension, a
order of ramification are not the sole properties dictating
fractal to Euclidean crossover. In the special case of the z
field Ising model of the first member (b53), recursion rela-
tions are iterated to yield the exact closed-form express
for the partition function, in agreement with the result of R
@5#.
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